Molecular nanostructures & computing

This slideshow requires JavaScript.

In 2010, my group proposed and demonstrated the concept of synapstor (synapse transistor) that the main functionalities of a biological synapse are achievable with an organic hybrid transistor (organic semiconductor and gold nanoparticles). This synapstor works at very low voltages (50 mV), in an electrolyte-gated configuration and it has been interfaced with living biological neurons which made these devices prone for a possible brain/neurocomputer interface. More recently, a network of OECTs (organic electrochemical transistor) interacting in a common electrolyte was used to demonstrate pattern recognitions in a neuro-inspired “reservoir computing”system.

We also demonstrated optically-driven switchable logical operations in nanoparticles self-assembled networks of molecular switches (azobenzene derivatives) interconnected by Au nanoparticles.  The complex non-linearity of electron transport and dynamics in these highly connected and recurrent networks of molecular junctions are prone for reservoir computing (RC) approaches. These results, without direct analogs in semiconductor devices, open new perspectives to molecular electronics in unconventional computing.

Some relevant publications (see more in the publication section):

Light-stimulatable molecules/nanoparticles networks for switchable logical functions and reservoir computing.
Y. Viero, D. Guérin, A. Vladyka, F. Alibart, S. Lenfant, M. Calame & D. Vuillaume. Adv. Func. Mater. 28, 1801506 (2018). link

Neuromorphic time-dependent pattern classification with organic electrochemical transistor arrays.
S. Pecqueur, M. Mastropasqua Talamo, D. Guérin, P. Blanchard,  J. Roncali, D. Vuillaume & F. Alibart. Adv. Electron. Mater. 4, 1800166 (2018). link

Cation Discrimination in Organic Electrochemical Transistors by Dual Frequency Sensing.
S. Pecqueur, D. Guérin, D. Vuillaume & F. Alibart. Org. Electron. 57, 232-238 (2018). link

Electrolyte-gated organic synapse transistor interfaced with neurons.
S. Desbief, M. di Lauro, S. Casalini, D. Guerin, S. Tortorella, M. Barbalinardo, A. Kyndiah, M. Murgia, T. Cramer, F. Biscarini & D. Vuillaume. Org. Electron. 38, 21-28 (2016). (link here)

Low voltage and time constant organic synapse-transistor.
S. Desbief, A. Kyndiah, D. Guerin, D. Gentili, M. Murgia, S. Lenfant, F. Alibart, T. Cramer, F. Biscarini & D. Vuillaume. Organic Electronics 21, 47-53 (2015). (link here)

A memristive nanoparticle/organic hybrid synapstor for neuro-inspired computing.

F. Alibart, S. Pleutin, O. Bichler, C. Gamrat, T. Serrano-Gotarredona, B. Linares-Barranco & D. Vuillaume. Adv. Func. Mater. 22, 609-616 (2012). (link here)

An organic-nanoparticle transistor behaving as a biological spiking synapse.
F. Alibart, S. Pleutin, D. Guerin, C. Novembre, S. Lenfant, K. Lmimouni, C. Gamrat & D. Vuillaume. Adv. Func. Mater. 20(2), 330-337 (2010). (link here)