Other results in molecular electronics (before 2015)

Self-assembled molecular nanodielectrics and molecular transistors

– Demonstration of the suppression of tunneling charge transfer through self-assembled monolayers (SAMs) of organic molecules (alkylsilane). [1, 2].
– First nanofabrication of an organic nanotransistor (OFET) with a 30 nm channel length (world record until 2004), using such an organic monolayer self-assembly as a gate insulator film. [3, 4, 5].
– Demonstration of a fully functioning organic transistor where both the gate dielectric and the semiconductor are embedded into a single self-assembled monolayer. [6].

Dynamic properties of molecular junctions.

– First measurements of low frequency noise (1/f and RTS) in molecular junctions. Correlation with defects in the junctions as measured by admittance spectroscopy in the range 1Hz to 1MHz. [7, 8] and with dipolar relaxation in molecular junctions. [9]
– Detailed study of the conductance statistics in Au nano-dot(<10 nm)/molecule/C-AFM molecular junctions [10] and coupled study (exp. and DFT) of the mechanical strain effect induced by the C-AFM tip on the transport properties (dipole reorientation at the molecule/metal interface) [11].
– Determination of the intermolecular interaction (π-π energy coupling) from conductance histograms [25].

Molecular diodes, switches and memories

– Experimental demonstration of the current rectification in a molecular junction with a structure metal/donor-bridge-acceptor molecule/metal as theoretically proposed by Aviram and Ratner in 1976. [12, 13].
– Design and synthesis a new type of molecular diodes by sequential chemisorption of molecules on silicon [14, 15].
– Demonstration of a “record” “on/off” conductance ratio up to 7,000  for a new azobenzene-thiophene molecular switch [16].
– Nanoparticule/molecule self-assembled networks with light-induced reconfiguration [26], negative differential resistance, memory and reconfigurable logic functions [27].
– First molecular diode working at high frequency (18 GHz) with a cut-off frequency of 550 GHz [24].

Neuro-inspired organic nano-devices

– New concept of a nanoparticle organic memory and field effect transistor (NOMFET) [17, 18] which exhibits the main behavior of a biological spiking synapse. [19], and working at low voltage (1V) [20].
– Demonstration that organic synapstors (synapse-transistor) behave as memristors, and demonstration of STDP, spike-timing dependent plasticity) [21].
– Compact model of organic synapstors developed, validated and implemented in a device/circuit simulator [22]
– Demonstration of neuro-inspired circuits (associative memory showing a pavlovian learning) with organic synapstors [23].

  1. C. Boulas et al. Phys. Rev. Lett. 76(25), 4797 (1996).
  2. D. Vuillaume et al. Phys. Rev. B 58(24), 16491-16498 (1998).
  3. J. Collet et al. Appl. Phys. Lett. 76(14), 1941-1943 (2000).
  4. D.K. Aswal et al. Small 1(7), 725-729 (2005).
  5. D.K. Aswal et al., Ana. Chem. Acta 568(1-2), 84-108 (2006).
  6. M. Mottaghi et al. Adv. Func. Mater. 17, 597-604 (2007).
  7. N. Clément et al. Phys. Rev. B 76, 205407 (2007).
  8. N. Clément et al. Phys. Rev. B 82, 035404 (2010).
  9. S. Pleutin et al. Phys. Rev. B 82(12) 125436 (2010).
  10. K. Smaali et al. ACS Nano 6, 4639-4647 (2012).
  11. K. Smaali et al. Nanoscale 7, 1809-1819 (2015).
  12. R.M. Metzger et al. J. Am. Chem. Soc. 119(43), 10455 (1997).
  13. C. Krzeminski et al. Phys. Rev. B. 64, 085405 (2001).
  14. S. Lenfant et al. Nano Letters 3(6), 741-746 (2003).
  15. S. Lenfant et al. J. Phys. Chem. B 110(28), 13947-13958 (2006).
  16. K. Smaali et al. ACS Nano, 4(4), 2411-2421 (2010).
  17. D. Tondelier et al. Appl. Phys. Lett. 85(23), 5763-5765 (2004).
  18. C. Novembre et al. Appl. Phys. Lett. 92(10), 103314 (2008).
  19. F. Alibart et al. Adv. Func. Mater. 20(2), 330-337 (2010),
  20. S. Desbief et al. Org. Electron. 21, 47-53 (2015).
  21. F. Alibart et al. Adv. Func. Mater. 22, 609-616 (2012).
  22. O. Bichler et al. IEEE Trans. Electron. Dev. 57(11), 3115-3122 (2010).
  23. O. Bichler et al. Neural Computation 25(2), 549-566 (2013).
  24. J. Trasabares et al., Nature Communications 7, 12850 (2016).
  25. J. Trasobares et al., Nano Lett., 17, 3215-3224 (2017).
  26. Y. Viero et al., J. Phys. Chem. C 119, 21173-21183 (2015).
  27. T. Zhang et al., J. Phys. Chem. C , 121, 10131-10139 (2017).